Fast speaker adaptive training for speech recognition

نویسندگان

  • Daniel Povey
  • Hong-Kwang Jeff Kuo
  • Hagen Soltau
چکیده

In this paper we describe various fast and convenient implementations of Speaker Adaptive Training (SAT) for use in training when Maximum Likelihood Linear Regression (MLLR) is to be used in test time to adapt Gaussian means. The memory and disk requirements for most of these are similar to those for normal ML training; the computation in all cases is dominated by the need to compute the MLLR transforms. Commonly MLLR is combined with Constrained MLLR (CMLLR) which can be viewed as a feature space affine transform and has its own form of SAT (we will call this CMLLR-SAT); we experiment with combining the two forms of SAT. We find that even on top of CMLLR-SAT, MLLR-SAT gives improvements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Fast Automatic Speech Recognition Training

The novel approach to speaker adaptation within speech recognition system basing on late clustering of prototype speakers is presented. For a new speaker the speaker prototype is created dynamically on the basis of selected remembered prototypes that are similar enough to the new one. The training utterances are prepared in an optimized way to decrease training duration without negative influen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008